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We present several elementary results in the burgeoning field of Alternative Facts (AF,
or AFC if the Axiom of Choice is assumed). These “theorems” are all utterly false, but their
proofs sound surprisingly convincing and break down in unexpectedly subtle ways. The
purpose of these proofs is not only to provide humor to those who read them with a twinkle
in their eye, but also to open up the machinery of mathematical arguments to those who
don’t. The point is to teach rigor through humor: laughter is the reward for understanding.
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1 WARMING UP

1 Warming Up

1.1 Right for the Wrong Reason

Theorem 1.1 (Long Division). 3× 9 = 27.

Proof.

27

3 · 9 = 3
√

81 = 3 81
6
21
21
0

�

Theorem 1.2 (Cancellation). 16
64

= 1
4
.

Proof.
16

64
=

1�6

�64
=

1

4
. (1.1)

There are three other anomalous two-digit fractions: 19
95

= 1
5
, 26

65
= 2

5
, and 49

98
= 4

8
. �

1.2 The Drunk Pythagorean Theorem

Theorem 1.3 (“Pythagoras”). In a right triangle with sides a, b, c as shown, c = a+ b.

Proof. We bisect a and b, draw perpendiculars

a

b
c

to the middle of c, and observe that the path
indicated by arrows has the same length a+ b
as that of the two legs of the triangle. We
repeat the procedure, bisecting the legs of the
similar right triangles generated by our first
cuts. Following a similar jagged path brings us
closer to c, but still preserves the total length
of the path, a + b. This procedure may be
repeated indefinitely; passing to the limit, we
see that a path of length a + b converges to a
line of length c; hence c = a+ b. �

Corollary 1.4. 3 + 4 = 5.

Proof (1). Take the Pythagorean triple (3, 4, 5); then 3 + 4 = 5 by Thm. 1.3. �
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2 BASIC NUMBER THEORY

2 Basic Number Theory

In this section, we invoke the spirit of Georg Cantor to prove the following:

1. 1 is the largest natural number.

2. All n ∈ N are equal.

3. All n ∈ N are equal to zero.

4. All n ∈ N are a whole lot less than a million, but all n ∈ N are very large.

5. Zero is a very large number, and 1 = 0.

2.1 The Largest Number

Theorem 2.1. 1 is the largest natural number.

Proof. Suppose, to the contrary, that some n > 1 is the largest number. Then n2 must be
strictly less than n (since n is the largest, and n 6= 1), and therefore n2 − n = n(n− 1) < 0.
But this is impossible: both factors, n and n−1, are positive, so their product n(n−1) must
also be positive. Therefore our assumption is false, and 1 is the largest natural number. �

2.2 Total Equality

Theorem 2.2 (Marx). All n ∈ N are equal.

Proof. Let n denote the larger of two natural numbers: n := max{a, b}. We will show by
induction that for all n ∈ N, a = b. Indeed, when n = 0, the requirement that a, b ∈ N forces
a = b = 0. Now suppose for some k ∈ N that a = b. Then,

max{a, b} = k + 1 =⇒ max{a− 1, b− 1} = k, (2.1)

so by the inductive hypothesis a− 1 = b− 1, and therefore a = b. Hence a = b even for
n = k+ 1; this completes the inductive step, and we conclude that any two natural numbers
are equal to their maximum. Equivalently, all natural numbers are equal. �

Theorem 2.3 (Nihilism). All n ∈ N are equal to zero.

Proof. We proceed by strong induction on n. Certainly for n = 0, zero is equal to zero.
Next, we assume for all k ≤ n that k = 0. In particular, 1 = 0. Then k + 1 = 0 + 0 = 0,
which completes the inductive step and proves that n = 0 for all n ∈ N. �
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2.3 Very Large Numbers 3 “REAL” ANALYSIS

2.3 Very Large Numbers

Theorem 2.4 (Law of Large Numbers). All n ∈ N are a whole lot less than a million, but
all n ∈ N are very large.

Proof. We first show that all n ∈ N are a whole lot less than a million, and then that all
n ∈ N are very large, both by induction on n, starting with n = 1. Surely 0 is a whole lot
less than a million; and if some k is a whole lot less than a million, then so is k + 1. Now
by Thm. 2.1, 1 is the largest natural number and therefore very large. And given some very
large k ∈ N, k + 1 must also be very large. So all n ∈ N are very large numbers a whole lot
less than a million. �

Corollary 2.5. Zero is a very large number, and 1 = 0.

Proof (2). Since all n ∈ N equal zero (Thm. 2.3) and all n ∈ N are very large (Thm. 2.4),
zero is very large. Moreover, ten billion is a whole lot less than a million (in particular, less
than 1, the largest number), and by Thm. 2.2 it must equal 1, and both must equal zero. �

3 “Real” Analysis

In this section, we begin our quest to write down as many proofs that 1 = 2 as possible.
Throughout, Proof (n) denotes the nth proof that 1 = 2.

Remark 3.1. The statement that 1 = 2 is equivalent (by induction) to the statement that
n = 0 for any n ∈ N \ {0}. In light of this, Cors. 1.4 and 2.5 constitute our first and second
proofs of this fact; many more follow.

The classic statement and proof of our main theorem follows:

Theorem 3.2 (Fundamental “Theorem” of Numbers). 1 = 2.

Proof (3). Let a = b be nonzero quantities: then, a = b implies that

a2 = ab =⇒ a2 − b2 = ab− b2 =⇒ (a− b)(a+ b) = b(a− b) =⇒ a+ b = b, (3.1)

and since a = b, we get a+ b = b+ b = 2b = b =⇒ 2 = 1. �

3.1 Complex Exponentials

Theorem 3.3 (Square Roots). 1 = −1.

Proof (4). 1 =
√

(−1)(−1) =
√
−1 ·
√
−1 = i · i = i2 = −1. �
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3.2 Methods of Calculus 3 “REAL” ANALYSIS

Theorem 3.4 (Transcendentals). For all x ∈ R, ex = 1.

Proof. ex = exp(2πi · x
2πi

) = [exp(2πi)]x/2πi = 1x/2πi = (11/2πi)x = 1x = 1. �

Proof (5). Take x = ln(2) in Thm. 3.4; then eln(2) = 2 = 1. �

Theorem 3.5. For all n ∈ N and for all nonzero a ∈ R, an = 1.

Proof. We proceed by strong induction on n: the case n = 0 gives a0 = 1, which is true by
definition. Assuming that ak = 1 for all k ≤ n ∈ N, we have

ak+1 = a2k−(k−1) =
ak · ak

ak−1
=

1 · 1
1

= 1, (3.2)

where ak = ak−1 = 1 by the inductive hypothesis. �

Proof (6). Take a =
√

2 and n = 2 in Thm. 3.5; then
√

2
2

= 2 = 1. �

3.2 Methods of Calculus

We next apply differential and integral calculus to muster two more proofs of Thm. 3.2:

Proof (7). Observe first that

12 = 1 · 1 = 1;

22 = 2 · 2 = 2 + 2;

32 = 3 · 3 = 3 + 3 + 3, etc. (3.3)

By analogy, x2 = x · x =

x times︷ ︸︸ ︷
x+ · · ·+ x. Taking the derivative of both expressions, we get

d

dx
(x2) = 2x;

d

dx
(x+ · · ·+ x) = 1 + · · ·+ 1︸ ︷︷ ︸

x

= x. (3.4)

Hence 2x = x =⇒ 1 = 2. �

Proof (8). Observe that 1
x

= 2 1
2x

. We integrate both expressions dx, using the fact that
[ln(2x)]′ = 2 1

2x
(from the chain rule) to make a substitution in the second integral:∫

1

x
dx = ln |x|;

∫
2

1

2x
dx = ln |2x|. (3.5)

Hence ln |x| = ln |2x|, and taking x = 1 we have ln(1) = ln(2) =⇒ 1 = 2. �
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4 ADVANCED DARK WIZARDRY

4 Advanced Dark Wizardry

In this section, we continue our quest to find proofs that 1 = 2 using more advanced methods.
We then give a two more profoundly baffling results before closing on a humorous note.

4.1 Series and Transforms

Proof (9). Recall that a series for ln(2) can be obtained from the Taylor series for ln(1 + x):

ln(1 + x) =
∞∑
i=1

(−1)n−1

n
xn =⇒ ln(2) =

∞∑
i=1

(−1)n−1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · (4.1)

We rearrange the terms of this series; indeed, it is not too hard to check that

ln(2) =
∞∑
i=1

[(
1

2n− 1
− 1

2(2n− 1)

)
− 1

4n

]
=

=

(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · · =

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · · = 1

2
ln(2). (4.2)

Hence ln(2) = 1
2

ln(2), and so 1 = 1
2

=⇒ 1 = 2. �

Proof (10). Consider the function f : R → R given by f(x) = 1. Its Fourier transform f̂ ,

the Dirac delta, is zero almost everywhere, so
ˆ̂
f ≡ 0 identically. And because

ˆ̂
f = f by the

inversion theorem, we immediately have 1 = 0. �

4.2 Two Last Results

Theorem 4.1 (Fundamental “Theorem” of Calculus). For all a ∈ R and any integrable
function f : [0, a]→ R,

I :=

∫ a

0

f(x) dx = 0. (4.3)

Proof. We make a substitution, beloved by physicists: u := sin
(
πx
a

)
=⇒ du = π

a
cos
(
πx
a

)
:

cos

(
πx

a

)
=

√
1− sin2

(
πx

a

)
=
√

1− u2 =⇒ dx =
a

π

du√
1− u2

. (4.4)

Observe that x = 0 =⇒ u = 0, and x = a =⇒ u = 0, so that our integral becomes

I =

∫ a

0

f(x) dx =
π

a

∫ 0

0

f
(
a
π

sin−1 u
)

√
1− u2

du = 0. (4.5)

�

Theorem 4.2. R is countable.
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4.3 Epilogue 4 ADVANCED DARK WIZARDRY

Proof (I). Since Q is dense in R, between any two real numbers a 6= b can be found a rational
number q. This defines a bijection (a, b) 7→ q from pairs of real numbers to rational numbers,
so R has the same cardinality as Q, and therefore R is countable. �

Proof (II). We will explicitly construct a bijection N → R. Choose any a1 ∈ N and any
b1 ∈ R, and define fa1 : N → R by fa1(a1) = b1. After sending a1 7→ b1, excise them from
their respective sets and consider N\{a1} and R\{b1}. Choose (a2, b2) ∈ N×R\ (a1, b1) and
again define fa2 : N → R by fa2(a2) = b2. Keep excising the chosen points from N and R,
and continue defining similar functions fa for all a ∈ N. Now, in exactly the same manner,
define fb1 : R → N by fb1(b1) = a1, and define such functions fb for all b ∈ R. What we’ve
done is connect N to R with “strands” or arrows mapping one set into the other pointwise,
and then showing that each arrowhead can be reversed. It remains to bunch up the strands
into a single function, so to that end we define

fN :=
⋃
a∈N

fa; fR :=
⋃
b∈R

fb. (4.6)

Each fa corresponds to an fb, so fN and fR are inverses and give a bijection N→ R. �

4.3 Epilogue

We close with a meta-theorem on proofs:

Theorem 4.3. There are infinitely many proofs that 1 = 2.

Proof. We proceed by induction. Clearly 1 6= 2, so there are zero proofs that 1 = 2.
(Alternatively, one could argue that the case n = 1 has been amply substantiated by any
of the preceding proofs 1–10.) Assuming that there are k proofs, there are immediately
k + 1− 1 = k + 2− 1 = k + 1 proofs that 1 = 2, so the induction is complete and one finds
that there are arbitrarily many proofs of this deep and subtle truth. �
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